2 research outputs found

    InterNAV3D: A Navigation Tool for Robot-Assisted Needle-Based Intervention for the Lung

    Get PDF
    Lung cancer is one of the leading causes of cancer deaths in North America. There are recent advances in cancer treatment techniques that can treat cancerous tumors, but require a real-time imaging modality to provide intraoperative assistive feedback. Ultrasound (US) imaging is one such modality. However, while its application to the lungs has been limited because of the deterioration of US image quality (due to the presence of air in the lungs); recent work has shown that appropriate lung deflation can help to improve the quality sufficiently to enable intraoperative, US-guided robotics-assisted techniques to be used. The work described in this thesis focuses on this approach. The thesis describes a project undertaken at Canadian Surgical Technologies and Advanced Robotics (CSTAR) that utilizes the image processing techniques to further enhance US images and implements an advanced 3D virtual visualization software approach. The application considered is that for minimally invasive lung cancer treatment using procedures such as brachytherapy and microwave ablation while taking advantage of the accuracy and teleoperation capabilities of surgical robots, to gain higher dexterity and precise control over the therapy tools (needles and probes). A number of modules and widgets are developed and explained which improve the visibility of the physical features of interest in the treatment and help the clinician to have more reliable and accurate control of the treatment. Finally the developed tools are validated with extensive experimental evaluations and future developments are suggested to enhance the scope of the applications

    A multi-sensory mechatronic device for localizing tumors in minimally invasive interventions

    No full text
    Tumor localization in traditional lung resection surgery requires manual palpation of the deflated lung through a thoracotomy. It is a painful procedure that is not suitable for many patients. Therefore, a multisensory mechatronic device was designed to localize tumors using a minimally invasive approach. The device is sensorized with tactile, ultrasound and position sensors in order to obtain multimodal data of soft tissue in real time. This paper presents the validation of the efficiency and efficacy of this device via an ex vivo experimental study. Tumor pathology was simulated by embedding iodine-agar phantom tumors of varying shapes and sizes into porcine liver tissue. The device was then used to palpate the tissue to localize and visualize the simulated tumors. Markers were then placed on the location of the tumors and fluoroscopic imaging was performed on the tissue in order to determine the localization accuracy of the device. Our results show that the device localized 87.5% of the tumors with an average deviation from the tumor center of 3.42 mm
    corecore